
04/02/2019 Widget Interface

https://www.w3.org/TR/widgets-apis/ 1/14

Widget Interface
W3C Recommendation 31 October 2013
obsoleted 11 October 2018

This Version:
https://www.w3.org/TR/2018/OBSL-widgets-apis-20181011/

Latest Version:
http://www.w3.org/TR/widgets-apis/

Previous Version:
http://www.w3.org/TR/2013/REC-widgets-apis-20131031/

Latest Editor's Draft:
http://w3c.github.io/packaged-webapps/api/Overview.html

Test suite:
http://dev.w3.org/2006/waf/widgets-api/test-suite/

Implementation report:
http://dev.w3.org/2006/waf/widgets-api/imp-report/

Editor:
Marcos Cáceres

Please refer to the errata for this document, which may include some normative corrections.

See also translations.

Copyright © 2013 W3C® (MIT, ERCIM, Keio, Beihang), All Rights Reserved. W3C liability, trademark and document use rules apply.

Abstract

This specification defines an application programming interface (API) for widgets that provides, amongst other
things, functionality for accessing a widget's metadata and persistently storing data.

Status of this Document

This section describes the status of this document at the time of its publication. Other documents may
supersede this document. A list of current W3C publications and the latest revision of this technical report can
be found in the W3C technical reports index at https://www.w3.org/TR/.

This specification is obsolete and should no longer be used as a basis for implementation.

The Widget specifications became W3C Recommendations in 2012-2013. They were designed to enable
interactive single purpose application for displaying and/or updating local data or data on the Web, packaged in
a way to allow a single download and installation on a user's machine or mobile device.

Since 2013, Widgets has had limited deployment and its usage has been reduced since then. Service Workers
and Web App Manifest are considered to provide better solutions nowadays.

For purposes of the W3C Patent Policy this Obsolete Recommendation has the same status as an active
Recommendation; it retains licensing commitments and remains available as a reference for old
implementations but is no longer recommended for future implementation.

Table of Contents

1 Introduction
1.1 The Widget Family of Specifications
1.2 Design Goals and Requirements

2 Conformance
3 Definitions
4 User Agent
5 The WindowWidget Interface

http://www.w3.org/
https://www.w3.org/TR/2018/OBSL-widgets-apis-20181011/
http://www.w3.org/TR/widgets-apis/
http://www.w3.org/TR/2013/REC-widgets-apis-20131031/
http://w3c.github.io/packaged-webapps/api/Overview.html
http://dev.w3.org/2006/waf/widgets-api/test-suite/
http://dev.w3.org/2006/waf/widgets-api/imp-report/
http://marcosc.com/
http://w3c.github.io/packaged-webapps/api/errata.html
http://www.w3.org/2003/03/Translations/byTechnology?technology=widgets
http://www.w3.org/Consortium/Legal/ipr-notice#Copyright
http://www.w3.org/
http://www.csail.mit.edu/
http://www.ercim.eu/
http://www.keio.ac.jp/
http://ev.buaa.edu.cn/
http://www.w3.org/Consortium/Legal/ipr-notice#Legal_Disclaimer
http://www.w3.org/Consortium/Legal/ipr-notice#W3C_Trademarks
http://www.w3.org/Consortium/Legal/copyright-documents
https://www.w3.org/TR/
https://www.w3.org/TR/service-workers/
https://www.w3.org/TR/appmanifest/
https://www.w3.org/2018/Process-20180201/#rec-rescind

04/02/2019 Widget Interface

https://www.w3.org/TR/widgets-apis/ 2/14

6 The Widget Interface
6.2 Metadata Attribute Values

6.2.1 Localizable strings
6.2.2 Examples

6.3 The width Attribute
6.4 The height Attribute
6.5 The preferences Attribute

6.5.3 Usage Example 1
6.5.4 Usage Example 2

7 The WidgetStorage Interface
7.1 Example - comparing storage areas

8 Widget Storage Areas
8.1 Read-only Items

9 Getting Localizable Strings
9.1 Example 1
9.2 Example 2
9.3 Example 3

Revision history
19 April 2012
5 December 2011
13 June 2011
7 September, 2010

Normative References
Informative References

1 Introduction
This section is non-normative.

This specification defines an application programming interface that enables the ability to:

Access some of the metadata declared in a widget's configuration document.
Persistently store data relating to a widget instance.
Retrieve the name and value of preferences, which may have been declared in a widget's configuration
document or at runtime.

1.1 The Widget Family of Specifications

This section is non-normative.

This specification is part of the Widgets family of specifications, which together standardize widgets as a
whole. The list of specifications that make up the Widgets family of specifications can be found on the Web
Applications Working Group's wiki.

1.2 Design Goals and Requirements

This section is non-normative.

The design goals for this specification are documented in the [Widget Requirements] document. This document
addresses some of the requirements relating to Application Programming Interfaces of the [Widget
Requirements] document:

Instantiated Widget API: addressed by widget object.

IDL Definitions: to meet this requirement, this specification makes use of [WebIDL].

Manipulation of Author-defined start-up values: addressed by using a widget storage area and preferences
attribute's extension of the Storage interface defined in [Web Storage].

Configuration Document Data: this is addressed by the widget object's attributes.

2 Conformance

All examples and notes in this specification are non-normative, as are all sections explicitly marked as non-
normative. Everything else in this specification is normative.

The key words must, must not, should, recommended, may and optional in the normative parts of this
specification are to be interpreted as described in [RFC2119].

The IDL blocks in this specification are conforming IDL fragments as defined by the WebIDL specification.

http://www.w3.org/2008/webapps/wiki/WidgetSpecs
http://www.w3.org/2008/webapps/wiki/
http://www.w3.org/TR/2009/WD-widgets-reqs-20090430/#application-programming-interfaces
http://www.w3.org/TR/2009/WD-widgets-reqs-20090430/#instantiated-widget-api
http://www.w3.org/TR/2009/WD-widgets-reqs-20090430/#idl-definitions
http://www.w3.org/TR/2009/WD-widgets-reqs-20090430/#manipulation-of-author-defined-start-up-values
http://www.w3.org/TR/2009/WD-widgets-reqs-20090430/#configuration-document-data

04/02/2019 Widget Interface

https://www.w3.org/TR/widgets-apis/ 3/14

Only user agents can claim conformance to this specification. Conformance requirements phrased as
algorithms or specific steps can be implemented in any manner, so long as the end result is equivalent to what
would be achieved when following the specification.

Note: Implementations can partially check their level of conformance to this specification by
successfully passing the test cases of the [Interface-Test-Suite]. Passing all the tests in the test
suite does not imply conformance to this specification; It only implies that the implementation
conforms to aspects tested by the test suite.

3 Definitions
The following definitions are used throughout this specification. Please note that the following list is not
exhaustive; other terms are defined throughout this specification.

Author script

Some code running within a widget instance (e.g., some ECMAScript).

Configuration document

A configuration document is reserved file called "config.xml" at the root of the widget package as specified
in the [Widgets-Packaging] specification.

Getting

A DOM attribute is said to be getting when its value is being retrieved (e.g. by an author script).

Initialization

The act of user agent processing a widget package through the Steps for Processing a Widget Package,
as specified in the [Widgets-Packaging] specification.

Preference

A persistently stored name-value pair that is associated with the widget the first time the widget is initiated.

Start file

A file in the widget package to be loaded by the user agent when it instantiates the widget, as specified in
the [Widgets-Packaging] specification.

Setting

A DOM attribute is said to be setting when its value is being set to some value (e.g. by an author script).

Supports

A user agent implements a mentioned specification or conformance clause.

Viewport

A CSS viewport. For a start file rendered on continuous media, as defined in the [CSS] specification, a
viewport is the area on which the Document of the start file is rendered by the user agent. The dimensions of
a viewport excludes scrollbars, toolbars, and other user interface "chrome".

Widget Instance

A browsing context that comes into existence after initialization. The concept of a browsing context is
defined in [HTML]. Multiple widget instances can be instantiated from a single widget package. A widget
instance is unique and does not share any DOM attribute values, widget storage area, or [Web Storage]
storage areas with any other widget instance.

4 User Agent
A user agent is a software implementation of this specification that also supports the [Widgets-Packaging]
specification.

Note: The user agent described in this specification does not denote a "widget user agent" at large.
That is, a user agent that implements all the specifications, and dependencies, defined in the

http://dev.w3.org/2006/waf/widgets/#steps-for-processing-a-widget-package
http://www.w3.org/TR/CSS21/visuren.html#viewport
http://www.w3.org/TR/CSS21/media.html#continuous-media-group

04/02/2019 Widget Interface

https://www.w3.org/TR/widgets-apis/ 4/14

widgets family of specifications. The user agent described in this specification is only concerned
with the behavior of programming interfaces. A user agent needs to impose implementation-
specific limits on otherwise unconstrained inputs, e.g. to prevent denial of service attacks, to guard
against running out of memory, or to work around platform-specific limitations.

5 The WindowWidget Interface
For a widget instance, a user agent must expose a unique object that implements the Widget interface to author
scripts that are same origin as the instance of the widget (e.g., a Document loaded in a [HTML] iframe element
with content from within a widget package). User agent implementing [HTML]'s Window interface must implement
the Widget interface as the widget attribute of the window object in the manner defined by the WindowWidget
interface.

[NoInterfaceObject]
interface WindowWidget {
 readonly attribute Widget widget;
};

Window implements WindowWidget;

6 The Widget Interface
An object that implements the Widget interface exposes the following attributes:

interface Widget {
 readonly attribute DOMString author;
 readonly attribute DOMString description;
 readonly attribute DOMString name;
 readonly attribute DOMString shortName;
 readonly attribute DOMString version;
 readonly attribute DOMString id;
 readonly attribute DOMString authorEmail;
 readonly attribute DOMString authorHref;
 readonly attribute WidgetStorage preferences;
 readonly attribute unsigned long height;
 readonly attribute unsigned long width;
};

Note: A user agent can support the Storage interface on DOM attributes other than the preferences
attribute (e.g., a user agent can support the [Web Storage] specification's localStorage attribute of
the window object in conjunction to the preferences attribute). For the sake of interoperability across
widget user agents, and where it makes sense, authors can use the preferences attribute in
conjunction to other APIs that expose an object that implements the Storage interface.

If a user agent has previously associated a widget storage area with a widget instance, the user agent must not
re-create the preferences attribute unless explicitly requested to do so by the end-user or for security or privacy
reasons (e.g., the end-user wants to purge personal data). Instead, the previously associated widget storage
area (or an equivalent clone) can be accessed using the Storage interface. When an object implementing the
Widget interface is instantiated, if a user agent has not previously associated a widget storage area with the
instance of a widget, then the user agent must create the preferences attribute.

6.1 Usage Example

This section is non-normative.

This example shows how a widget's metadata can be accessed by through the widget interface.

Given the following configuration document:

<widget xmlns = "http://www.w3.org/ns/widgets"
 id = "http://example.org/exampleWidget"
 version = "2.0 Beta"
 height = "200"
 width = "200"
 viewmodes = "floating">

<name short="Example 2.0">The example Widget!</name>

<description>A sample widget to demonstrate some of the possibilities.</description>

<author href = "http://foo-bar.example.org/"
 email = "foo-bar@example.org">Foo Bar Corp</author>

<preference name = "apikey"

http://dev.w3.org/2006/webapi/WebIDL/#NoInterfaceObject
http://www.whatwg.org/specs/web-apps/current-work/#window
http://dev.w3.org/2006/webapi/WebIDL/#es-implements-statements

04/02/2019 Widget Interface

https://www.w3.org/TR/widgets-apis/ 5/14

 value = "ea31ad3a23fd2f"
 readonly = "true"/>

</widget>

And given the following start file:

<!doctype html>
<title>About this Widget</title>
<style>
html {
 padding: 20px;
}

#aboutBox{
 padding: 20px;
 box-shadow: 2px 2px 10px #444;
 border-radius: 15px;
 background-color: #ECEDCF;
 text-align:center;
}
</style>

<body onload="makeAboutBox()">
<div id="aboutBox">
<h1></h1>
<h1 id="name">Name</h1>
<p id="version">Version: </p>
<hr>
<p id="description">...</p>
<hr>
<p id="author">© </p>
</div>
<script>
 // example that generates an about box
 // using metadata from a widget's configuration document.
 function makeAboutBox(){
 var storeLink = document.getElementById("storeLink");
 storeLink = storeLink.setAttribute("href", widget.id);

 var icon = document.getElementById("icon");
 icon.setAttribute("alt", widget.shortName);
 var title = document.getElementById("name");
 title.innerHTML = widget.name;

 var version = document.getElementById("version");
 var prodKey = widget.preferences["productKey"];
 version.innerHTML += widget.version +
" (" + prodKey + ")";
 var description = document.getElementById("description");
 description.innerHTML = widget.description;

 var author = document.getElementById("author");
 author.innerHTML += widget.author;
 }
</script>

The widget would render as:

The Example Widget!
Version: 2.0 Beta (aeg-sadf-asfd-asd)

A sample widget to demonstrate some of the possibilities.

© Foo Bar Corp

04/02/2019 Widget Interface

https://www.w3.org/TR/widgets-apis/ 6/14

6.2 Metadata Attribute Values

Most of the attributes of the widget interface correspond to the metadata derived from the initialization process.

When an object implementing the Widget interface is instantiated, a user agent sets the attributes identified in
the left column of the configuration attributes table to the values that correspond to values in table of
configuration defaults as defined in [Widgets-Packaging] (identified by the values in the right hand column).

Configuration Attributes Table
Attributes Values in Table of Configuration Defaults Is localizable string
author author name yes
version widget version yes
shortName widget short name yes
name widget name yes
description widget description yes
authorEmail author email no
authorHref author href no
id widget id no

Upon getting any of the attributes from the attributes column of the configuration attributes table, a user agent
must return the corresponding value from the 'Values in Table of Configuration Defaults' column.

Attributes that contain a localizable string are identified by having word yes in the "Is localizable string" column
in the Configuration Attributes Table above.

6.2.1 Localizable strings

Some attributes in the Configuration Attributes Table come in the form of a localizable string, which is defined
by the [Widgets-Packaging] specification as a...

"data structure containing a sequence of one or more strings, each having some associated
directional information and language information (if any). The purpose of a localizable string is to
assist user agent in correctly applying the Unicode [BIDI] algorithm when displaying text."

When getting an attribute that is identified as a localizable string, the user agent must apply the rule for getting
localizable strings and return the result.

6.2.2 Examples

This example shows how a user agent is expected to behave when an empty configuration document is
given:

 <widget xmlns = "http://www.w3.org/ns/widgets"/>

Would result in the following being reflected in the through the widget object:

<!doctype html>
<script>
 alert(widget.version === "") //true
 alert(widget.name === "") //true
 alert(widget.author === "") //true
 alert(widget.authorEmail === "") //true
 alert(widget.authorHref === "") //true
 alert(widget.description === "") //true
 alert(widget.id === "") //true
 alert(widget.shortName === "") //true
</script>

6.3 The width Attribute

Upon getting the width attribute, a user agent must return a number that represents the width of the widget
instance’s viewport in [CSS] pixels.

6.4 The height Attribute

Upon getting the height attribute, a user agent must return a number that represents the height of the widget
instance’s viewport in [CSS] pixels.

http://www.w3.org/TR/widgets/#table-of-configuration-defaults

04/02/2019 Widget Interface

https://www.w3.org/TR/widgets-apis/ 7/14

6.5 The preferences Attribute

The preferences attribute allows authors to manipulate a widget storage area that is unique for the instance of a
widget. It does this by implementing the Storage interface specified in [Web Storage].

Upon invocation of the setItem(), removeItem() and clear() methods, if the invocation did something, a user
agent must dispatch a storage event akin to what is specified in "the storage event" section of [Web Storage]
(i.e., the preferences attribute behaves the same as localStorage with regards to dispatching events).

Upon invocation of the setItem() or removeItem() method by an author script on a read-only item, a user agent
must throw a NO_MODIFICATION_ALLOWED_ERR exception and must not fire a storage event. The
NO_MODIFICATION_ALLOWED_ERR is defined in the [DOM3Core] specification.

Upon invocation of the preferences attribute's clear() method, a user agent must not remove read-only items
and corresponding values from a widget storage area. A user agent must, however, remove other items from
the widget storage area in the manner described in the [Web Storage] specification without throwing a
NO_MODIFICATION_ALLOWED_ERR exception for items that the user agent cannot remove.

When getting or setting the preferences attribute, if the origin of a widget instance is mutable (e.g., if the user
agent allows document.domain to be dynamically changed), then the user agent must perform the preference-
origin security check. The concept of origin is defined in [HTML].

6.5.1 Preference Origin Security Check

The steps to perform the preference-origin security check are given by the following algorithm:

1. The user agent may throw a SECURITY_ERR exception instead of returning a Storage object if the request
violates a policy decision (e.g. if the user agent is configured to not allow the page to persist data).

2. If the Document's origin is not a scheme/host/port tuple, then throw a SECURITY_ERR exception and abort these
steps.

3. Otherwise, return the Storage object associated with that widget instance's preferences attribute.

6.5.2 Creating the preferences Attribute

The steps to create the preferences attribute are given by the following algorithm:

1. Create a widget storage area that is unique for the origin of this instance of a widget.

2. If the widget preferences variable of the table of configuration defaults contains any preferences, then for
each preference held by widget preferences:

a. Let pref-key be the name of the preference.

b. If the pref-key already exists in the storage area, stop processing this preference: go back to step 2
in this algorithm, and process the next preference (if any).

c. Let pref-value be the value of the preference.

d. Add pref-key and pref-value to the widget storage area:

1. If the user agent cannot write to the widget storage area (e.g., because it ran out of disk space,
or the space quota was exceeded, etc.), terminate all processing of this widget. It is
recommended that the user agent inform the end-user of the error.

2. If this preference's associated readonly value is true, then flag this key as a read-only item in
the widget storage area.

3. Implement the Storage interface on the widget storage area, and make the preferences attribute a pointer
to that storage area.

6.5.3 Usage Example 1

This section is non-normative.

The following example shows the different means by which an author can interface with the widget object's
preferences attribute in ECMAScript. The possibilities include using either the getItem() and setItem() methods,
or bracket access (or a combination of both).

<!doctype html>
...

http://dev.w3.org/html5/webstorage/#event-storage
http://dev.w3.org/html5/webstorage/#event-storage

04/02/2019 Widget Interface

https://www.w3.org/TR/widgets-apis/ 8/14

<fieldset id="prefs-form">
<legend>Game Options</legend>
 <label>Volume: <input type="range" min="0" max="100" name="volume"/> </label>
 <label>Difficulty: <input type="range" min="0" max="100" name="difficulty"/> </label>
 <input type="button" value="Save" onclick="savePrefs()"/>
 <input type="button" value="load" onclick="loadPrefs()"/>
</fieldset>

...

<script>
var form = document.getElementById("prefs-form");
var fields = form.querySelectorAll("input[type='range']");
function loadPrefs () {
 for(var i = 0; i < fields.length; i++){
 var field = fields[i];
 if (typeof widget.preferences[field.name] !== "undefined") {
 field.value = widget.preferences.getItem(field.name);
 }
 }
}

function savePrefs () {
 for(var i = 0; i < fields.length; i++){
 var field = fields[i];
 widget.preferences.setItem(field.name,field.value);
 }
}
</script>

6.5.4 Usage Example 2

This section is non-normative.

This example demonstrates the expected behavior of a user agent that is interacting with preferences that were
declared in a configuration document. The user is able to modify and save various preferences. However, if the
user attempts to modify and save the license key, which is set to read-only, the widget will throw an error and
display an alert message.

04/02/2019 Widget Interface

https://www.w3.org/TR/widgets-apis/ 9/14

<!-- Configuration Document -->

<widget xmlns="http://www.w3.org/ns/widgets">
 <name>The 80's: Greatest Hits!</name>
 <preference name="licenseKey"
 value="f199bb20-1499-11df"
 readonly="true"/>
 <preference name="favtrack"
 value="billy"/>
 <preference name="playorder"
 value="1" />
</widget>

<!doctype html>

...

<script>
var fields;
function init(){
 fields = document.forms[0].elements;
 loadPrefs()
}

function loadPrefs () {
 for(var i = 0; i < fields.length; i++){
 var field = fields[i];
 if (typeof widget.preferences[field.name] !== "und
 field.value = widget.preferences[field.name];
 }
 }
}

function savePrefs () {
 for(var i = 0; i < fields.length; i++){
 var field = fields[i];
 try{
 widget.preferences.setItem(field.name,field.value
 }catch(e){
 if(e.code === DOMException.NO_MODIFICATION_ALLOW
 alert(e);
 }
 }
 }
 }
</script>

<body onload="init()">
 <fieldset id="prefs-form">
 <legend>Album Playback Settings</legend>
 <form>
 <label>Volume:
 <input type="range" min="0" max="100"
 step="10.0" value="50" name="volume">
 </label>
 <label>Playback:
 <select name="playorder">
 <option value=0>Loop
 <option value=1>Random
 <option value=2>Normal
 </select>
 </label>

 <label>Favorite Song

 <select name="favtrack">
 <option value=kate>Kate Bush: Babooshka
 <option value=billy>Billy Idol: White Wedding
 <option value=culture>Culture Club: Karma Chameleo
 </select>
 </label>

 <label>License Key: <input name="licenseKey"></label
</form>
<button onclick="savePrefs()">Save</button>
<button onclick="loadPrefs()">Load</button>
</fieldset>

...

7 The WidgetStorage Interface
The WidgetStorage Interface extends [Web Storage]'s Storage interface so that it can provide the necessary
functionality provided by this specification. It does not add any new methods or attributes; it just provides a
wrapper that makes it easier to implement on some platforms.

[NoInterfaceObject]
interface WidgetStorage : Storage {
};

7.1 Example - comparing storage areas

04/02/2019 Widget Interface

https://www.w3.org/TR/widgets-apis/ 10/14

This example shows how to work out if a storage event came from the widget or from the Web Storage's
localStorage.

<!doctype html>
<script>
//note that this code is only really useful inside an iframe!
window.addEventListener("storage", function handleStorage(event){
 if (event.storageArea === widget.preferences) {

 //the event was fired by the widget

 } else if (event.storageArea === window.localStorage ||
 event.storageArea === window.sessionStorage){

 //the event was fired by the Web Storage

 } else {

 //the event was fired by some other object.

 }
});
</script>

8 Widget Storage Areas
A widget storage area is a data-store that is unique for the widget instance that uses [Web Storage]'s Storage
interface but modifies the behavior of [Web Storage] by allowing some items to be read-only. A user agent uses
a widget storage area to store key-value pairs that pertain to the preferences attribute. An author script interfaces
with the widget storage area via the [Web Storage] specification's Storage interface.

A user agent must preserve the values stored in a widget storage area when a widget is re-instantiated (i.e.,
when the device is rebooted and the widget is reopened, the previously set data is made available to the widget
storage area).

8.1 Read-only Items

As an extension to the [Web Storage] specification, a widget storage area allows certain key-value pairs (items)
to be read-only: a read-only item is an item in a widget storage area that cannot be modified or deleted by an
author script. A read-only item always represents a preference that author explicitly flagged as "read-only" in the
widget's configuration document (denoted by a preference element having a readonly attribute value set to true).

9 Getting Localizable Strings

The rule for getting localizable strings is as follows:

1. Let lString be a copy of the localizable string to be processed.

2. If lString has no directional information associated with it (i.e., no dir attribute was used anywhere in the
ancestor chain of the element or attribute in question), and the localized string does not contain any sub-
strings with directional information within the string itself, return the lString and terminate this algorithm.

For example, the consider the following configuration document :

<widget xmlns = "http://www.w3.org/ns/widgets"
 version = "1.0">
 <name>Hello</name>
</widget>

Would result in the following in the API:

<!doctype html>
<script>
 alert(widget.version === "1.0") //returns true
 alert(widget.name === "Hello") //returns true
</script>

3. If the lString contains directional information and/or contains any sub-strings with directional information,
then recursively do the following from the outermost string to the inner most sub-string of lString:

A. Let direction be the direction of the sub-string.

B. Prepend one of the following Unicode characters to the sub-string based on matching the following
directions:

lro

http://dev.w3.org/html5/webstorage/#event-storage

04/02/2019 Widget Interface

https://www.w3.org/TR/widgets-apis/ 11/14

U+202D 'LEFT-TO-RIGHT OVERRIDE'.
ltr

U+202A 'LEFT-TO-RIGHT EMBEDDING'.
rlo

U+202E 'RIGHT-TO-LEFT OVERRIDE'.
rtl

U+202B 'RIGHT-TO-LEFT EMBEDDING'.

C. Append the sub-string with a U+202C 'POP DIRECTIONAL FORMATTING' character.

D. If the sub-string contains any further sub-strings with directional information repeat the steps A-D in
this algorithm.

4. Return lString.

9.1 Example 1

This section is non-normative.

The following configuration document demonstrates how having an dir attribute is handled by the Widget
API:

<widget xmlns = "http://www.w3.org/ns/widgets"
 version = "1.0"
 dir = "ltr">
 <name>Hello</name>
</widget>

Would result in the following in the API:

<!doctype html>
<title>Example 1</title>
<body style="background-color: #ECEDCF">
<p id ="name"></p>
<p id = "version"> </p>

<script>
var nameElem = document.getElementById("name");
var versionElem = document.getElementById("version");

nameElem.innerHTML = 'The widget's name is "' + widget.name +
 '".
Escaped, the value of name is "' +
 escape(widget.name) + '".';

versionElem.innerHTML = 'The widget\'s version is "' + widget.version +
 '".
 Escaped, the value of version is "' +
 escape(widget.version) +'".';
</script>

Would render as:

The widget's name is 'Hello'.
Escaped, the value of name is [%u202AHello%u202C].

The widget's version is '1.0'.
Escaped, the value of version is [%u202A1.0%u202C].

9.2 Example 2

This section is non-normative.

Given this configuration document, where the widget element has dir set to ltr and name has a span element
with a dir attribute set to lro:

<widget xmlns = "http://www.w3.org/ns/widgets"
 version = "1.0"
 dir = "ltr">
 <name>olleH</name>
</widget>

04/02/2019 Widget Interface

https://www.w3.org/TR/widgets-apis/ 12/14

The following would result in the start file of the widget:

<!doctype html>
<title>Example 2</title>
<body style="background-color: #ECEDCF">
<p id ="name"></p>
<p id = "version"> </p>

<script>
var nameElem = document.getElementById("name");
var versionElem = document.getElementById("version");
nameElem.innerHTML = 'The widget\'s name is "' + widget.name +
 '".
Escaped, the value of name is "' +
 escape(widget.name) + '".';

versionElem.innerHTML = 'The widget\'s version is "' + widget.version +
 '".
 Escaped, the value of version is "' +
 escape(widget.version) +'".';
</script>

Would render as:

The widget's name is ' Hello '.
Escaped, the value of name is "%u202A%u202EolleH%u202C%u202C".

The widget's version is '1.0'.
Escaped, the value of version is "%u202A1.0%u202C".

9.3 Example 3

This section is non-normative.

Given this configuration document, where the widget element has no base direction set, the name has two span
element with a dir attribute set to lro:

<widget xmlns = "http://www.w3.org/ns/widgets"
 version = "1.0">
 <name>
 Hello1
 2olleH

 Goodbye1
 2eybdooG
 </name>
</widget>

The following would result in the start file of the widget:

<!doctype html>
<title>Example 3</title>
<body style="background-color: #ECEDCF">
<p id ="name"></p>
<p id = "version"> </p>

<script>
var nameElem = document.getElementById("name");
var versionElem = document.getElementById("version");
nameElem.innerHTML = 'The widget\'s name is "' + widget.name +
 '".
Escaped, the value of name is "' +
 escape(widget.name) + '".';
versionElem.innerHTML = 'The widget\'s version is "' + widget.version +
 '".
 Escaped, the value of version is "' +
 escape(widget.version) +'".';
</script>

Would render as:

The widget's name is 'Hello1 Hello2 Goodbye1 Goodbye2 '.
Escaped, the value of name is
"Hello1%20%u202E2olleH%u202C%20Goodbye1%20%u202E2eybdooG%u202C".

04/02/2019 Widget Interface

https://www.w3.org/TR/widgets-apis/ 13/14

The widget's version is '1.0'.
Escaped, the value of version is [1.0].

Revision history

19 April 2012

Clarified "the origin of a widget instance" based on feeback we received that indicated it was unclear.

5 December 2011

Added example of how to compare storage areas.

Added WidgetStorage interface.

13 June 2011

Clarified storage event text (hopefully).

Editorial cleanup, found a few conformance requirements that were not being tested.

Removed the definition of valid IRI, as it was not referenced anywhere.

Removed the definition of feature, as it was not referenced anywhere.

Added examples for i18n related material.

7 September, 2010

The 7 September, 2010 version of the specification drops support for the openURL method, which was part of
previous versions of this specification. The Working Group found a number of privacy and security issues
relating to openURL, as well as a way to achieve the same intended functionality via other means, and hence
decided to drop it from the specification.

The working group recommends that authors use HTML's a element to achieve the same functionality, or use
the window.open() method where appropriate. Some examples of how the a element can be used to achieve the
same functionality as openURL are given below. Of course, the examples will only work on implementations that
actually have scheme handlers to handle each type of URI.

Send email:
Was: openURL("mailto:jsmith@example.org?subject=A%20Hello&body=hi")
Now: Email Jane

Make a phone call:
Was: openURL("tel:+1234567678")
Now: Call Bill!

Open a web page:
Was: openURL("http://example.org")
Now: Example

Send and sms:
Was: openURL("sms:+41796431851,+4116321035;?body=hello%20there")
Now: SMS Bob

Normative References

[CSS]
Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification. W3C.

[DOM3Core]
Document Object Model (DOM) Level 3 Core Specification. W3C.

[DOM2Events]
Document Object Model (DOM) Level 2 Events Specification. W3C.

[RFC2119]
Key words for use in RFCs to Indicate Requirement Levels. IETF.

[Widgets-Packaging]
Widget Packaging and Configuration. W3C.

[WebIDL]
Web IDL (Work in progress). W3C.

http://lists.w3.org/Archives/Public/public-webapps/2012AprJun/0250.html
http://www.w3.org/TR/html5/text-level-semantics.html#the-a-element
http://www.w3.org/TR/CSS2/
http://www.w3.org/TR/DOM-Level-3-Core/
http://www.w3.org/TR/DOM-Level-2-Events/
http://www.ietf.org/rfc/rfc2119
http://www.w3.org/TR/widgets/
http://www.w3.org/TR/WebIDL/

04/02/2019 Widget Interface

https://www.w3.org/TR/widgets-apis/ 14/14

[Web Storage]
Web Storage. W3C.

[HTML]
HTML (Work in progress). W3C.

Informative References

[Interface-Test-Suite]
Test Suite for the Widget Interface Specification.

[Widget Requirements]
Widgets Requirements. W3C.

http://www.w3.org/TR/webstorage/
http://dev.w3.org/html5/spec/Overview.html
http://dev.w3.org/2006/waf/widgets-api/test-suite/
http://dev.w3.org/2006/waf/widgets-reqs/

