
Requirement For Standardizing Widgets

W3C Working Group Note 27 September 2011

This version:
http://www.w3.org/TR/2011/NOTE-widgets-reqs-20110927/

Latest published version:
http://www.w3.org/TR/widgets-reqs/

Previous versions:
http://www.w3.org/TR/2010/WD-widgets-reqs-20101026/

Latest editor's draft:
http://dev.w3.org/2006/waf/widgets-reqs/

Editor:
Marcos Cáceres

Copyright © 2011 W3C® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability, trademark and document use
rules apply.

Abstract

This document lists the design goals and requirements that specifications would need to
address in order to standardize various aspects of widgets. A Widget is an interactive
single purpose application for displaying and/or updating local data or data on the Web,
packaged in a way to allow a single download and installation on a user's machine or
mobile device. Typical examples of widgets include clocks, CPU gauges, sticky notes,
battery-life indicators, games, and widgets that make use of Web services, like weather
forecasters, news readers, e-mail checkers, photo albums, and currency converters.

Status of this Document

This section describes the status of this document at the time of its publication. Other
documents may supersede this document. A list of current W3C publications and the
latest revision of this technical report can be found in the W3C technical reports index at
http://www.w3.org/TR/.

Publication as a Working Group Note does not imply endorsement by the W3C
Membership. This is a draft document and may be updated, replaced or obsoleted by
other documents at any time. It is inappropriate to cite this document as other than work
in progress.

This document reflects three years of gathering and refining requirements for the Widget
family of specifications. The requirements were gathered by extensive consultation with

Requirement For Standardizing Widgets https://www.w3.org/TR/widgets-reqs/

1 of 28 05/02/2019, 14:03

W3C members and the public, via the Working Group's mailing lists (WAF archive,
WebApps archive). The Working Group's goal is to make sure that vendor's requirements
for Widgets are complete and have been effectively captured. The Widget family of
specifications will set out to address as many requirements as possible (particularly the
ones marked with the keywords MUST and SHOULD).

This document is produced by the Web Applications (WebApps) Working Group (WG).
This WG is part of the Rich Web Clients Activity and this activity is within the W3C's
Interaction Domain. The public is encouraged to send comments to the WebApps
Working Group's public mailing list public-webapps@w3.org (archive). See W3C mailing
list and archive usage guidelines.

This document was produced by a group operating under the 5 February 2004 W3C
Patent Policy. W3C maintains a public list of any patent disclosures made in connection
with the deliverables of the group; that page also includes instructions for disclosing a
patent. An individual who has actual knowledge of a patent which the individual believes
contains Essential Claim(s) must disclose the information in accordance with section 6 of
the W3C Patent Policy.

Table of Contents

1 Introduction
2 Conformance
3 Design Goals
4 Requirements

4.1 Packaging
R1. Packaging Format
R2. Media Type
R3. File Extension
R4. Internal Abstract Structure
R5. Reserved Resource Names
R6. Addressing Scheme
R7. Multilingual File Names
R8. Localization Guidelines
R9. Automatic Localization
R10. Device Independent Delivery
R11. Data Compression
R12. Derive the Media Type of Resources

4.2 Configuration Document
R13. Format and Schema
R14. Widget Metadata
R15. Authorship Metadata
R16. Copyright Notice and License Metadata
R17. Visual Rendering Dimensions
R18. Declarative Bootstrap
R19. Automated Bootstrap
R20. Iconic Representations
R21. Configuration Parameters
R22. Author-defined Start-up Values (Preferences)
R23. Feature Access Declarations
R24. Configuration Document Independence

Requirement For Standardizing Widgets https://www.w3.org/TR/widgets-reqs/

2 of 28 05/02/2019, 14:03

R25. Preferred Display Mode
4.3 Application Programming Interfaces

R26. Instantiated Widget API
R27. IDL Definitions
R28. Configuring Runtime Properties
R29. Manipulation of Author-defined Start-up Values
R30. Widget State Change Events
R31. Network State Change Events
R32. Modal Priority
R33. Device Specific APIs and Services
R34. Configuration Document Data
R35. Scheme Handler
R36. Resolve Addressing Scheme
R37. Display mode API and Events

4.4 User experience
R38. User Interface Accessibility
R39. Display Modes

4.5 User Agents
R40. Remote and Local Updates
R41. Multiple Widget Instances
R42. Display Mode Switching

4.6 Security and Digital Signatures
R43. Runtime Security Exceptions
R44. Digital Signatures
R45. Multiple Signatures and Certificate Chains
R46. Signature Document Format
R47. Support for Multiple Message Digest Algorithms
R48. Support for Multiple Signature Algorithms
R49. Key Lengths
R50. Key Usage Extension
R51. Inclusion of Revocation Information
R52. Default Security Policy
R53. Widget Black/White Listing
R54. Security Declarations

References
Acknowledgments

1 Introduction

A widget is an interactive single purpose application for displaying and/or updating local
data or data on the Web, packaged in a way to allow a single download and installation
on a user's machine or mobile device. A widget may run as a stand-alone application
(meaning it can run outside of a Web browser), and it is envisioned that the kind of
widgets being standardized by this effort will one day be embedded into Web documents.

In this document, the runtime environment in which a widget is run is referred to as a
widget user agent. Note that running widgets may be the specific purpose of a widget
user agent, or it may be a mode of operation of a more generic user agent (e.g. a Web
browser). A widget running on a widget user agent is referred to as an instantiated
widget. Prior to instantiation, a widget exists as a widget package.

Requirement For Standardizing Widgets https://www.w3.org/TR/widgets-reqs/

3 of 28 05/02/2019, 14:03

Prior to this standardization effort, there was no standardized way to author, package,
digitally sign, or internationalize a widget package for distribution and deployment on the
Web. In the widget space, although many widget user agents are now on the market,
widgets built for one widget user agent (e.g., Windows 8 Metro applications) are still not
able to run on any other widget user agent (Apple's Dashboard). This document, along
with the Widget family of specifications, attempt to address the interoperability issues.

This document lists the design goals and requirements that specifications need to
address in order to standardize how widgets are authored/scripted, digitally signed,
secured, packaged and deployed in a way that is device independent, follows W3C
principles, and is as interoperable as possible with existing market-leading user agents
and existing Web browsers.

Note: To be clear, this specification describes the requirements for
installable/desktop or mobile widgets (akin to Apple's Dashboard, Opera
Widgets, Windows 8's Metro Applications). This document does not
address the requirements of "web widgets", such as iGoogle Gadgets or
Windows Live Gadgets, which are being specified by the Open Ajax
Alliance's IDE Working Group.

2 Conformance

This section is normative.

The key words MUST, MUST NOT, REQUIRED, NOT REQUIRED, SHOULD, SHOULD
NOT, RECOMMENDED, MAY, and OPTIONAL in the normative parts of this document
are to be interpreted as described in [RFC2119].

This specification only applies to one class of product: W3C Technical Reports. The
Working Group will attempt to standardize widgets by addressing the requirements listed
in this document through the Widget family of specifications, which include:

[Widget Packaging and Configuration]
[Widget Updates]
[Widget Interface]
[Digital Signatures for Widgets]
[Widget URIs]
[View Modes]

Note: Only normative statements marked with the keywords MUST and
SHOULD are required to be standardized by the Widget family of
specifications. The Working Group will publish an informative Working
Group Note at the end of the standardization process listing any
requirements that were not formally addressed by the Widget family of
specifications.

Although a number of specifications will be created to address the requirements
enumerated in this document, in some instances, it will be the amalgamation of multiple
parts of individual specifications that address a single requirement. Nevertheless, this
document speaks only of a conforming specification (defined below). The Working

Requirement For Standardizing Widgets https://www.w3.org/TR/widgets-reqs/

4 of 28 05/02/2019, 14:03

Group's choice to have multiple specifications address the following requirements, as
opposed to having a monolithic specification, was made for the following reasons:

Easier for multiple editors to maintain and edit, as each can check in and out the
relevant specifications they are editing.
Easier for the Working Group to discuss during teleconferences and face-to-face
meetings.
Easier for the public and experts to review.
Easier for implementers to implement, as each specification will be as modular as
possible.
Easier to print, for the purpose of review.

A conforming specification is one that addresses one or more requirements listed in
this document. A conforming specification SHOULD attempt to address requirements
marked with the keywords “SHOULD” or “MAY” unless there is a technically valid reason
not to do so. The validity of technical reasons for not addressing any requirements will be
determined by the Working Group members, and through communication with vendors
and the public on the Working Group's public mailing list public-webapps@w3.org
(archive).

3 Design Goals

This section is informative.

This section lists the design goals that the Working Group recommends a conforming
specification adopt when attempting to standardize the various standardizable aspects of
widgets. The requirements are directly motivated by the following design goals. The
design goals are listed in alphabetical order.

Accessibility:

A conforming specification needs to support relevant accessibility guidelines, such
as [WCAG 2.0].

Compatibility with other standards:

A conforming specification needs to maintain compatibility with, or directly make
use of, other standards where possible.

Current development practice or industry best-practice:

A conforming specification needs to consider the development practices currently
used by widget developers and promote relevant industry best-practice, such as
[MWBP].

Device independence:

A conforming specification needs to support relevant device independence
guidelines.

Ease of authoring:

Requirement For Standardizing Widgets https://www.w3.org/TR/widgets-reqs/

5 of 28 05/02/2019, 14:03

A conforming specification needs to specify solutions that are easy to use and avoid
unnecessary complexity, meaning that a widget package should be easy for authors
to create without requiring special or expensive proprietary software, and easy for
end-users to acquire and install/run.

Internationalization and localization:

A conforming specification needs to implement relevant internationalization and
localization guidelines, such as [i18n-XML] and [BCP 47], as well as consider
current practical internationalization solutions used by the widget development
community.

Interoperability:

A conforming specification needs to attempt to be as interoperable as possible with
existing market-leading widget user agents.

Longevity:

A conforming specification needs to be specified in such a way that it ensures that a
widget package can still be processed well into the future (e.g. 100 years from the
date the specification reaches “Recommendation Status as defined in the ” [W3C
Process] document).

Security:

A conforming specification needs to address the security concerns of end-users,
authors, distributors and device manufacturers by recommending appropriate
security policies and programming behavior. A conforming specification must also
consider the distribution and deployment security requirements as they relate to
authors and vendors.

Web and offline distribution:

A conforming specification needs to deal with cases where an end-user acquires a
widget package over [HTTP] or via some other non HTTP-based (offline) means,
such as a local file system, Blue tooth or a Multimedia Message Service. In
addition, a conforming specification needs to provide a means by which widgets
can be updated when a new or different version of a widget becomes available. It
must be possible to perform updates from online and offline sources.

Wider community benefit

Any new technologies or processes defined by a conforming specification needs to
designed in such a way that they are beneficial the wider Web community at large.
In other words, conforming specifications should try not to be insular to their
problem domain, but should also consider the needs of the wider Web community.

4 Requirements

This section is normative.

Requirement For Standardizing Widgets https://www.w3.org/TR/widgets-reqs/

6 of 28 05/02/2019, 14:03

This section enumerates the requirements that a conforming specification would need to
address to standardize widgets. These requirements are directly motivated by the design
goals and are based on an iterative process of feedback from the public, discussions with
various vendors, and a survey of market-leading widget user agents.

4.1 Packaging

This section enumerates the requirements that a conforming specification needs to
address to standardize the packaging format of a widget. The objective of this section is
to ensure that a conforming specification recommends a general packaging format that
is, amongst other things:

Already a de facto standard on market-leading widget user agents on both desktops
and mobile devices.
Able to be used in multilingual contexts.
Suitable for mobile devices.
Able to support digital signatures.

R1. Packaging Format

A conforming specification MUST recommend a packaging format that is royalty free,
open, and widely implemented across market-leading widget user agents and compatible
with mobile devices. In addition, a conforming specification MUST specify exactly which
aspects of the packaging format are to be supported by conforming widget user agents.

Motivation:
Compatibility with other standards, Web and offline distribution, device
independence, ease of use, current development practice or industry best-practice,
internationalization and localization, interoperability, and longevity.

Rationale:
To specify an interoperable and pervasive packaging format that is relatively easy
for vendors to implement, and easy for authors to use/access on any platform.

R2. Media Type

A conforming specification MUST recommend that a conforming widget package be sent
over [HTTP] with a formally registered [media type] that is specific to the Widget family of
specifications. The Working Group MUST formally register the media type with the
Internet Assigned Numbers Authority (IANA). A conforming specification MUST specify
how a widget user agent will process a widget package that was served with an
unsupported media type or when the media type is unspecified.

Motivation:
Compatibility with other standards, Web and offline distribution, and ease of use.

Rationale:
To provide a formal means for an author to denote that a widget package conforms
to a W3C endorsed specification when a widget package is served over [HTTP]. In
addition, the media type could potentially be used in conjunction with an auto-
discovery mechanism to facilitate deployment of a widget package.

Requirement For Standardizing Widgets https://www.w3.org/TR/widgets-reqs/

7 of 28 05/02/2019, 14:03

R3. File Extension

A conforming specification MUST specify a file extension that authors MAY assign to
widget packages in contexts that rely on file extensions to indicate the content type, such
is the case on many popular file systems.

Motivation:
Device independence, ease of use, Web and offline distribution, interoperability,
and longevity.

Rationale:
When a [media type] is not present, as is often the case when a widget is
instantiated locally from an end-user's storage device, the operating system will
sometimes use the file extension to associate the widget package with the
appropriate widget user agent. However, when the widget is distributed over [HTTP]
and a media type is present, a file extension will usually not be required. However,
in some cases, a Web server may rely on a file extension to correctly set a widget
package's media type in the [HTTP] headers. In addition, a user agent that is aware
of the content type of widgets may add the appropriate file extension automatically
or include it as the default if the user is prompted for the file name during a saving
process.

R4. Internal Abstract Structure

A conforming specification MUST recommend a packaging format that supports
structuring resources into collections such as files and directories (understood in this
document in a broader sense than in some popular file systems, namely as forms of
generic logical containers). In addition, the packaging format SHOULD allow authors to
add and remove resources of a widget package without needing to recreate the widget
package.

Motivation:
Ease of use, interoperability, and current development practice or industry best-
practice.

Rationale:
To provide authors with a format that is easy to use in a development process.

R5. Reserved Resource Names

A conforming specification MUST indicate if any resources (files or directories or similar
logical containers) are mandatory or reserved and what specific function they serve in the
widget package. A conforming specification SHOULD specify graceful error
handling/recovery procedures if those resources are used erroneously or missing.

Motivation:
Ease of use, compatibility with other standards, and current development practice
or industry best-practice.

Rationale:
To make it more efficient for widget user agents to locate reserved resources at
runtime. For example, the packaging format may require authors to place all
resources inside a 'resources' directory located at the root of the widget package.

Requirement For Standardizing Widgets https://www.w3.org/TR/widgets-reqs/

8 of 28 05/02/2019, 14:03

R6. Addressing Scheme

A conforming specification MUST recommend a hierarchical addressing scheme that can
be used to address the individual resources within a widget package from within a
configuration document. The hierarchical addressing scheme MUST be capable of
expressing both absolute and relative relationships between a resource and the widget
package. In addition, the hierarchical addressing scheme MUST be interoperable with
resources that might also need to address other resources within the widget package
(e.g., HTML documents, CSS documents, JavaScript documents, etc.). The hierarchical
addressing scheme SHOULD be one that Web authors would feel comfortable using or to
which they are already accustomed.

Motivation:
Ease of use, compatibility with other standards, current development practice or
industry best-practice, and security.

Rationale:
To make it easy for authors to address resources from the configuration document
or other relevant resources within the widget package. For example, addressing a
custom icon within a widget package from the configuration document (e.g. <icon
src="icons/cat.ico'/>). Or, for example, addressing an image within a widget
package from within a HTML start file (e.g. <img src="/backgrounds
/sky.png'>).

R7. Multilingual File Names

A conforming specification MUST recommend a packaging format that allows for non-
ASCII characters in file and directory names, allowing authors to create widgets suitable
for various cultures and languages, as well as multilingual contexts. The packaging
format MUST either provide some means to declare the character encoding or specify
what the character encoding is. The [UTF-8] character encoding SHOULD be either the
default (if multiple encodings are allowed) or sole encoding used.

Motivation:
Internationalization and localization, current development practice or industry best-
practice, ease of use, interoperability, and longevity.

Rationale:
To allow authors to create files and folders using characters beyond the ASCII
character repertoire. Since packaged widgets are widely distributed, variation in
character encoding between different platforms or configurations may render a
widget with non-ASCII resources inoperable or otherwise degrade the user
experience unless a character encoding is used.

R8. Localization Guidelines

A conforming specification MUST provide guidelines that explain to authors how
collections of resources need to be structured for the purpose of internationalization.

Motivation:
Internationalization and localization, current development practice or industry best-
practice, ease of use, and interoperability.

Requirement For Standardizing Widgets https://www.w3.org/TR/widgets-reqs/

9 of 28 05/02/2019, 14:03

Rationale:
To both guide and encourage authors to localize content. For example, the
specification could mandate that authors place localized content into a strictly
named directory structure that denotes localized content (e.g. 'resources/en/'
for all English content, and 'resources/en-AU/' for further localized Australian-
English content, and so on).

R9. Automatic Localization

A conforming specification SHOULD specify a processing model that automatically
localizes content when authors follow the localization guidelines.

Motivation:
Internationalization and localization, current development practice or industry best-
practice, ease of use, and interoperability.

Rationale:
To define an internationalization model, complete with graceful error handling, to
reduce the amount of engineering work an author needs to do in order to localize a
widget.

R10. Device Independent Delivery

A conforming specification MUST recommend a packaging format that is suitable for
delivery on many devices, particularly Web-enabled mobile devices.

Motivation:
Device independence, Web and offline distribution, and interoperability.

Rationale:
To recommend a packaging format that is interoperable with desktops and for
mobile devices, where the widget space is currently growing.

R11. Data Compression

A conforming specification MUST recommend a packaging format that supports both
decompressed data and OPTIONAL data compression. A conforming specification
SHOULD also recommend at least one royalty-free default compression/decompression
algorithm that is compatible with market-leading widget user agents and implementations
of the packaging format on mobile devices.

Motivation:
Web and offline distribution, device independence, and current development
practice or industry best-practice.

Rationale:
To make a widget package smaller for delivery over [HTTP], where the cost of data
access is sometimes expensive for end-users. Compressing might also help with
transfer speed when a widget package is sent over a communication channel with
limited bandwidth, such as Bluetooth or infrared. Compressed widgets may also
have a lesser impact on a device's battery during download.

R12. Derive the Media Type of Resources

Requirement For Standardizing Widgets https://www.w3.org/TR/widgets-reqs/

10 of 28 05/02/2019, 14:03

In the case that the packaging format does not support labeling resources with a media
type, a conforming specification MUST either specify or recommend a means of deriving
the media type of resources for the purposes of rendering. A conforming specification
MAY define a means to override how a widget user agent derives the media type of a
resource (e.g., treat resources with the file extension .php as text/html), but MUST
NOT force a widget user agent to process resources of one media type as that of another
type (e.g. treating a jpeg image at text/html).

Motivation:
Web and offline distribution, device independence, and current development
practice or industry best-practice.

Rationale:
To allow appropriate rendering of resources by the widget user agent. For instance,
for the sake of interoperability, all widget user agents should treat resources with a
.html file extension as text/html (and not as application/xhtml+xml).

4.2 Configuration Document

This section enumerates the requirements that a conforming specification needs to
address in order to standardize the configuration document. The objective of this section
is to ensure that a conforming specification specifies a configuration document format
that defines:

Metadata elements that can capture metadata about a widget, including its title,
some form of identification, and versioning information.
Metadata elements that can capture authorship information.
A bootstrapping mechanism that would enable a widget user agents to
automatically instantiate a widget.
Relevant configuration parameters.

R13. Format and Schema

A conforming specification MUST specify the configuration document language using a
common data interchange format, as well as the rules for processing the configuration
document language and any micro-syntaxes represented as character data. A
conforming specification MUST specify graceful error handling procedures for when
metadata values are in error, or the values are impossible to satisfy or realize by the user
agent. The metadata MUST be extractable, processable and reusable in other contexts
(for instance, to create an online gallery of widgets). In addition, a conforming
specification SHOULD make it clear to authors which elements are optional and which
elements are mandatory. A conforming specification SHOULD specify a formal schema
for the language, as well as define any configuration defaults. The schema SHOULD
NOT be a normative part of the conforming specification, but MUST be suitable for use
by conformance checkers. A conforming specification MUST recommend that
configuration documents be encoded in [UTF-8]. A conforming specification MAY specify
the configuration document language using alternative standardized data interchange
formats (e.g. JSON) and schema.

Motivation:
Compatibility with other standards, current development practice or industry best-
practice, ease of use, internationalization and localization, longevity, interoperability,

Requirement For Standardizing Widgets https://www.w3.org/TR/widgets-reqs/

11 of 28 05/02/2019, 14:03

and accessibility.
Rationale:

To have a language in a format that is relatively easy for authors to read and write,
and provides effective internationalization support. An example of such a language
is [XML]. XML is generally accepted and understood by widget authors and parsed
by all market-leading widget user agents, and XML parsers generally have
reasonable support for [Unicode], which allows for effective internationalization and
localization.

R14. Widget Metadata

A conforming specification MUST specify the structure and semantics of elements that
represent metadata about a widget. More specifically, a conforming specification MUST
specify the structure and semantics of elements that represent data about the widget,
including the name, version number, a unique identifier, and a description of what a
widget does.

Motivation:
Current development practice or industry best-practice, interoperability, and
accessibility.

Rationale:
To provide authors with a practical set of metadata elements that describe various
aspects of the widget that may be used in various contexts.

R15. Authorship Metadata

A conforming specification MUST specify the structure and semantics data about the
authorship of a widget, including an author's name, e-mail, and organization.

Motivation:
Current development practice or industry best-practice, and interoperability.

Rationale:
To provide authors with a practical set of metadata elements that describe a widget
and its authorship that may be utilized within an application context (such as a
menu) or of importance to end-users.

R16. Copyright Notice and License Metadata

A conforming specification MUST specify the structure and semantics of fields that
explicitly reference, or otherwise include, a software license agreement or notice. In
addition, a conforming specification MUST provide a means to declare who holds the
copyright for the widget, as well as a model for how this data must be processed by a
widget user agent.

Motivation:
Current development practice or industry best-practice, and interoperability.

Rationale:
To provide authors with a means to legally declare how a widget and its various
internal resources can be used by end-users. For example, an author may include a
GNU-style license that allows others to reuse any source code.

Requirement For Standardizing Widgets https://www.w3.org/TR/widgets-reqs/

12 of 28 05/02/2019, 14:03

R17. Visual Rendering Dimensions

For widgets that make use of a rendering context, a conforming specification SHOULD
specify an OPTIONAL means for an author to declare the initial visual dimensions for an
instantiated widget in a way that is device independent (e.g. via [CSS] pixels). In the
absence of user style sheets, a conforming specification MUST specify that styling by the
author takes precedence over dimensional values declared in the configuration document
or any dimensional values implicitly computed by the widget user agent. However, in the
presence of user style sheets, user style sheets take precedence but MUST be applied in
conformance to the cascade model and rules of behavior specified in [CSS].

Motivation:
Ease of use, device independence, and current development practice or industry
best-practice.

Rationale:
To set up the rendering context for an instantiated widget in a way that is
compatible on a range of devices.

R18. Declarative Bootstrap

A conforming specification MUST specify a declarative bootstrap mechanism that
addresses the start file that is to be initially instantiated at runtime (the instantiated
widget). The bootstrap mechanism MUST NOT be able to address or instantiate local
files outside the scope of the widget package. However, the bootstrapping mechanism
MAY be able to address a resource on the Internet, but only of a media type allowed by
the automated bootstrap requirement (below) or resources that are of media types
supported by a widget user agent. A conforming specification MAY also allow authors to
declaratively bootstrap proprietary resources (e.g. a Flash movie) within the widget
package, so long as they are able to be processed or instantiated by the widget user
agent. If a bootstrap has not been declared by an author, then automated bootstrapping
MUST occur as described in the automated bootstrap requirement.

Motivation:
Ease of use, current development practice or industry best-practice, and security.

Rationale:
For example, bootstrapping could occur by dereferencing, via a relative reference,
the initial resource to be retrieved from within a widget package by a widget user
agent (e.g. '/ui/clock.svg'). Alternatively, the resource might be a HTML
document that when combined with the visual rendering dimensions requirement
displays at the appropriate size.

R19. Automated Bootstrap

A conforming specification SHOULD specify an automated model for finding the start file
of the widget in the absence of a declarative bootstrap. The automated bootstrap model
MUST NOT be able to address resources outside the scope of the widget package and
MUST NOT address resources on the Web over [HTTP] or any other protocol. The
widget user agent SHOULD be allowed to select its preferred format for the start file, and
then it SHOULD locate that resource first before attempting to locate other resources.

Motivation:

Requirement For Standardizing Widgets https://www.w3.org/TR/widgets-reqs/

13 of 28 05/02/2019, 14:03

Ease of use, device independence, current development practice or industry best-
practice, and internationalization and localization.

Rationale:
For example, the conforming specification could specify a model that searches for a
default file name (index.htm, index.html, index.svg, etc.) firstly within
localized directory names, as required by automatic localization, and then within the
directories of the widget package. If that search fails, then the widget user agent
could try to find files with extensions ".html, .svg, etc." starting from the root
directory.

R20. Iconic Representations

A conforming specification MUST specify a means to declare iconic representations of
the widget for use as alternate or fallback content, standby indicator or in a non-running
context. The conforming specification SHOULD NOT limit iconic representations to static
images and it SHOULD provide support for alternative text representations of an icon
where possible. A conforming specification SHOULD also recommend a default icon
media type and file name.

Motivation:
Ease of use, device independence, current development practice or industry best-
practice, internationalization and localization, interoperability, and accessibility.

Rationale:
To provide authors with a visual means of representing widgets to end-users prior to
instantiation. The icon may also serve as visual means for end-users to associate
an icon with a widget. For example, a small graphic of a calendar showing today's
date may represent a calendar widget.

R21. Configuration Parameters

A conforming specification MUST specify a means to for authors to declare values of
custom and predefined configuration parameters, all of which would be applied as a
widget is instantiated. A conforming specification MUST specify the default values for
specification-defined parameters in case a parameter is missing or the value supplied by
the author is invalid. A conforming specification SHOULD allow a widget user agent to
override author defined parameters in circumstances where it might be beneficial for
users or has the potential to improve performance or stability of the widget user agent.

Motivation:
Ease of use, and current development practice or industry best-practice.

Rationale:
To allow authors to declaratively control how a widget is configured during
instantiation. And, in the absence of any declarations, allow the widget user agent
to automatically configure a widget using default values. For example, the author
might declare that the value for the parameter width = 50 indicating the 50 as the
value for visual width. Or, in the absence of an author-declared width, the widget
user agent will automatically set the width to some standardized value (e.g. 300).

R22. Author-defined Start-up Values (Preferences)

Requirement For Standardizing Widgets https://www.w3.org/TR/widgets-reqs/

14 of 28 05/02/2019, 14:03

A conforming specification MUST specify a means to for authors to declare persistently
stored name-values pairs that an author MAY use to configure a widget instance when
the widget is first run. A conforming specification MUST allow authors to define which
values are read only, meaning that those values MUST be protected from modification at
runtime. A conforming specification MUST specify that these values MUST be made
available to the author at runtime via scripting.

Motivation:
Ease of use, and current development practice or industry best-practice.

Rationale:
To allow authors to configure a widget through declarative means using name value
pairs (i.e., "preferences" for a widget). This would allow authors to, for instance,
dynamically generate a widget to have predefined values that could be custom for
an end-user. For example, a user might want a weather widget that defaults to their
home city. When the widget is generated, the value of the home city is included in
the configuration document so when the widget starts, the end-user is not required
to specify which city they want to receive the weather forecast for.

R23. Feature Access Declarations

A conforming specification MUST specify or recommend a means to allow authors to
declare that an instantiated widget will require access to formally standardized features
that allow access to device-specific capabilities or proprietary features (e.g. a proprietary
API to access the camera on a device). A conforming specification MAY be specified in
such a way that fallback relationships can be declared so that if one feature is
unavailable, another can be declared as a possible substitute. In addition, a conforming
specification MUST provide authors with a means of stating which features are optional
and which features are mandatory for a widget to run.

Motivation:
Device independence, ease of use, security, and interoperability.

Rationale:
To allow authors to securely request access to device specific services and
features, and to allow widgets to use proprietary features but with a degree of
graceful degradation if a feature is unavailable to a particular widget user agent.

R24. Configuration Document Independence

A conforming specification MUST specify the configuration document format in such a
way that it can be used independently of the widget package that contains it. A
conforming specification MAY provide guidelines for how the configuration document can
be used separately from a widget package.

Motivation:
Ease of use, Web and offline distribution, and device independence.

Rationale:
To allow the configuration document to be accessed by other applications (either on
the server or on the client side) for unrelated purposes. For example, in the context
of a widget gallery Web site, a server may automatically extract the configuration
document from a widget package and serve it upon request. The extracted
configuration document may then be used, for instance, for checking information

Requirement For Standardizing Widgets https://www.w3.org/TR/widgets-reqs/

15 of 28 05/02/2019, 14:03

about the widget without needing to download the complete widget package. This
may be particularly useful for users of widgets on mobile devices, where the cost of
downloading data can sometimes be expensive.

R25. Preferred Display Mode

A conforming specification MUST provide a means for author to indicate at least one
preferred display mode for a widget. In the absence of a preferred mode, a conforming
specification SHOULD provide a consistent default display mode across all user agents.
A conforming specification SHOULD make it possible for an author to indicate to the
widget user agent which display modes the widget has been designed to run in. The
Widget User Agent MAY ignore the indications of display mode supported, but SHOULD
NOT ignore the preferred display mode.

Motivation:
Ease of use, Web and offline distribution, and device independence.

Rationale:
To provide authors a means to indicate a preference over how their widget is initially
rendered, though this would not be not guaranteed by the widget user agent. A
means of declaring the preferred display mode also provides authors some
reassurance, as some widgets may be better suited to being displayed in one
display mode over the others. As already stated, widget user agents may choose to
ignore the author's display mode preference, for example, if they do not support the
indicated display mode.

4.3 Application Programming Interfaces

This section enumerates the requirements that a conforming specification needs to
address to standardize an API for widgets. The objective of this section is to ensure that
a conforming specification specifies an API that allows authors to, amongst other things:

Manipulate the preferences and properties of an instantiated widget.
Capture widget-specific events.
Safely access services, resources, and other applications on the user's device.

R26. Instantiated Widget API

A conforming specification MUST specify a set of interfaces that expose properties,
methods, and events of an instantiated widget. These interfaces MUST be encapsulated
as a self-contained object, or some similar data structure, in a non-object-oriented
programming environment.

Motivation:
Ease of use, compatibility with other standards, and current development practice
or industry best-practice.

Rationale:
To allow authors to make their widgets interactive. See for example Apple's widget
Object described in the [Dashboard Reference] and Microsoft's System.Gadget
Object described in the [Sidebar Reference].

Requirement For Standardizing Widgets https://www.w3.org/TR/widgets-reqs/

16 of 28 05/02/2019, 14:03

R27. IDL Definitions

A conforming specification MUST specify the APIs in this section in a standardized
interface definition language (e.g. [Web IDL]).

Motivation:
Compatibility with other standards, current development practice or industry best-
practice, and internationalization and localization.

Rationale:
To facilitate implementation in [ECMAScript], which is already widely supported in
widget user agents. Facilitating the implementation of the APIs in ECMAScript will
allow authors to use existing ECMAScript code libraries such as jQuery, Dojo, and
Prototype.

R28. Configuring Runtime Properties

A conforming specification SHOULD specify a set of interfaces that expose relevant
properties and methods of the widget user agent.

Motivation:
Ease of use, compatibility with other standards, and current development practice
or industry best-practice.

Rationale:
To allow authors to access to any relevant state information or helper methods
provided by the widget user agent. Such properties could include localization
information, operating environment details, availability of network access, etc. See
for example Microsoft's [Sidebar Reference].

R29. Manipulation of Author-defined Start-up Values

A conforming specification MUST specify or recommend a set of interfaces for
dynamically getting and setting persistently stored values for a widget instance set using
the means provided by the author-defined start-up values. A widget user agent MUST
persistently retain a widget's author-defined start-up values in the case where a widget is
re-instantiated or the widget user agent is restarted. A conforming specification MUST
recommend an API that allows authors to iterate and modify the author-defined start-up
values that are not set to read-only, clear the values, add new values, get all the names
of the values, and get the number of values currently stored. A conforming specification
MUST specify that, if an author attempts to modify a value that is set as read-only, the
API throw an appropriate access violation exception.

Motivation:
Ease of use, compatibility with other standards, Web and offline distribution,
security, and current development practice or industry best-practice.

Rationale:
To allow widgets to be closed and re-instantiated without the end-user having to re-
input the author-defined start-up values for an instantiated widget. For example,
when using a weather widget, the end-user will want to store the preferred location
for weather information, and not be asked to input that information again every time
the widget is re-instantiated. The same would apply if the user has instantiated two
instances of the same widget and would like to see the weather forecast for two

Requirement For Standardizing Widgets https://www.w3.org/TR/widgets-reqs/

17 of 28 05/02/2019, 14:03

different cities (e.g., Paris and Sydney). When the widgets are re-instantiated, the
corresponding weather information would be downloaded to match each widget's
city value.

R30. Widget State Change Events

A conforming specification MUST define a set of states in the lifecycle of the instantiated
widget as well as how and when an instantiated widget enters each state. Changes in
states MUST have associated events which can be consumed by event handlers, such
as scripts. Additionally the API MUST expose the current state. A conforming
specification MUST NOT require the widget user agent to send events to the widget
immediately, and SHOULD allow the widget user agent to dispatch the events at its
convenience.

Motivation:
Current development practice or industry best-practice, and ease of use.

Rationale:
To allow authors to capture state-change events generated by the instantiated
widget.

R31. Network State Change Events

A conforming specification MUST specify a means that allows authors to check if a
widget instance is connected to the network. A conforming specification MUST define the
scope of the term "network" and MUST specify a means by which connection and
disconnection events can be captured by an author through script. A conforming
specification MUST NOT guarantee event delivery, as there may be cases where a
device is running low on resources (e.g., power) and can not afford to deliver them.

Motivation:
Current development practice or industry best-practice, and ease of use.

Rationale:
To allow authors to programmatically capture when the widget user agent has
acquired or lost a network connection, particularly for cases when the device
intermittently loses and regains the network connection.

R32. Modal Priority

A conforming specification SHOULD specify how an instantiated widget (or any of its
presentation contexts) should classify itself to the widget user agent as critical, floating,
output-only, etc.. Some of these mode changes may require the end-user's attention, in
which a case conforming specification SHOULD recommend that widget user agent find
a suitable way to draw the end-user's attention.

Motivation:
Current development practice or industry best-practice, ease of use, and
accessibility.

Rationale:
An example of this kind of behavior can be seen on Mac OS X, where a program's
icon bounces in the dock when a program has a critical window to display.

Requirement For Standardizing Widgets https://www.w3.org/TR/widgets-reqs/

18 of 28 05/02/2019, 14:03

R33. Device Specific APIs and Services

A conforming specification SHOULD specify a mechanism, either through an API or
through the configuration document, which allows instantiated widgets to bind to third-
party APIs that allow access to device-specific resources and services. A conforming
specification is NOT REQUIRED to specify any APIs to device specific resources or
services, but SHOULD provide some means of binding to those APIs if they are available
and the user agrees. A conforming specification SHOULD specify that bindings MUST
NOT occur without consulting the user or a policy which exists to represent the end user
(or the owner of the device).

Motivation:
Current development practice or industry best-practice, ease of use.

Rationale:
To endow widgets with functionality beyond what is currently available to HTML
documents, allowing widgets to be used as means to bridge special device
capabilities and operating environment services with data on the Web. Examples of
device-specific services and resources that could be made available through script
include cameras, SMS, GPS and address books.

R34. Configuration Document Data

A conforming specification SHOULD specify a means that allows authors to access data
they declared in the configuration document for the widget package.

Motivation:
Current development practice or industry best-practice.

Rationale:
To allow authors at runtime to easily access metadata declared in the configuration
document.

R35. Scheme Handler

A conforming specification SHOULD specify a means that allows authors to open [IRI]s in
an appropriate scheme handler (e.g., using the default Web Browser to open [HTTP]
URIs).

Motivation:
Current development practice or industry best-practice.

Rationale:
To allow authors to open a URL in the default system Web browser. For example, in
a news aggregator widget, to allow the end user to navigate to the source of a
particular news item. Alternatively, if the widget deems that a specific content may
be better experienced outside the context of the widget user agent, the user can be
offered the option of opening the content in the default system Web browser.

R36. Resolve Addressing Scheme

A conforming specification MUST define a mechanism to set the base URI for any DOM
instances that occur within the Widget, and it MUST define a mechanism that enables the

Requirement For Standardizing Widgets https://www.w3.org/TR/widgets-reqs/

19 of 28 05/02/2019, 14:03

construction of URI references between different resources within a widget package.

Motivation:
Current development practice or industry best-practice, interoperability, and
security.

Rationale:
To allow resources to be resolved and normalized within DOM attributes. For
example, addressing a resource via an [IRI] reference (e.g. where the src attribute resolves to something similar
to "widget://engine/myWidget.wgt/images/bg.png" or
"http://localhost/myWidget.wgt/images/bg.png").

R37. Display mode API and Events

A conforming specification MUST specify an API to allow authors to programmatically
switch between display modes. A conforming user agent MUST be allowed to ignore
requests by the author to switch to an unsupported display mode, but MUST throw an
exception or error if it will not perform the mode change. A conforming specification
MUST also provide a guaranteed means for authors to detect a change in display mode.
A conforming specification MUST provide a means for an author to check the current
display mode of a widget.

Motivation:
Current development practice or industry best-practice, interoperability, and
security.

Rationale:
To give authors a degree of control over the user experience of their widgets.

4.4 User experience

This section enumerates the requirements that a conforming specification needs to
address in order to standardize a user experience widgets. The objective of this section is
to ensure that a conforming specification make recommendations that would make
widgets accessible and able to be rendered on a range of devices.

R38. User Interface Accessibility

A conforming specification MUST specify that the language used to declare the user
interface of a widget be a language that is accessible at the various levels specified by
the [WCAG 2.0] (perceivable, operable, understandable, and robust): specifically, the
language MUST provide keyboard access to interactive graphical elements, and provide
means to access the widget's functionality through a non-graphical UI. For the user
interface language, the role and state of all interface elements MUST be available to
screen readers and other assistive technologies, to allow relevant sections of text and
functionality to be accessed.

Motivation:
Compatibility with other standards, current development practice or industry best-
practice, ease of use, and accessibility.

Rationale:

Requirement For Standardizing Widgets https://www.w3.org/TR/widgets-reqs/

20 of 28 05/02/2019, 14:03

To recommend a language, or a set of languages, that will allow authors to realize
their designs, while at the same time remaining accessible to screen readers and
other assistive technologies.

R39. Display Modes

A conforming specification MUST specify a set of display modes for widgets that stipulate
how widgets SHOULD be rendered at runtime when in a specific mode. A conforming
specification SHOULD also define particular allowed, or disallowed, user-interaction
behaviors for each display mode; such as the ability for a widget to be dragged or re-
sized. For each display mode, the way in which the widget is displayed MUST be
specified so that the rendering of the Widget is as consistent as possible across widget
user agents. The display modes SHOULD also be specified to interoperate with device
independence best practices and/or specifications. Proprietary display modes MAY be
supported by the Widget User Agent.

Motivation:
Compatibility with other standards, current development practice or industry best-
practice, ease of use, and accessibility.

Rationale:
To provide authors with a variety of commonly widget display modes and to help
ensure that their widgets are renders as consistently as possible across different
Widget User Agents. In addition, allowing proprietary display modes provides a
means to support innovative user experiences.

4.5 User Agents

This section enumerates the requirements that a conforming specification needs to
address in order to standardize certain aspects of widget user agents. The objective of
this section is to ensure that a conforming specification recommends features that will
make widget user agents interoperate more effectively with each other and with services
on the Web.

R40. Remote and Local Updates

A conforming specification MUST specify a model to allow widget user agents to check if
a new version of a widget package has become available online or from local storage. A
conforming specification MUST recommend that an updated widget is downloaded only
with the user's consent and that users be able to cancel or defer updates. An automatic
update MUST preserve the identity of a widget, meaning that that preferences previously
set by the user are retained after the update process. A conforming specification
SHOULD recommend that, when possible, updates be conducted over a secure
communication channel. In addition, a conforming specification SHOULD specify a
means for updates to be authenticated. A conforming specification SHOULD also define
a mechanism to protect against downgrade attacks using ancient versions of widgets. A
conforming specification SHOULD specify that signature verification policies be applied to
updates in a manner that is consistent with those applied upon original installation of the
widget.

Motivation:

Requirement For Standardizing Widgets https://www.w3.org/TR/widgets-reqs/

21 of 28 05/02/2019, 14:03

Security, current development practice or industry best-practice, and
interoperability.

Rationale:
To allow authors to provide updates for a widget package online. For example, the
author could declare in the configuration document an [IRI] for where the widget
user agent can check for updates. If an update to a widget package becomes
available, then the widget user agent could ask the end-user if they want to
download the widget.

R41. Multiple Widget Instances

A conforming specification MUST recommend that a widget user agent allow multiple
instances of a widget package to be instantiated. A conforming specification MAY
recommend that implementations which have sufficient resources (CPU, memory, etc.)
run widgets concurrently as separate processes.

Motivation:
Current development practice or industry best-practice and interoperability.

Rationale:
To allow multiples instances of the same widget to be run at the same time, but
possibly be configured differently. For example, instantiating two clock widgets
where one displays the time for Amsterdam and the other displays the time for
Boston.

R42. Display Mode Switching

A conforming specification MUST allow a widget user agent to dynamically change
display mode of a widget. Switching from one mode to another, however, MUST not
cause the re-instantiation of the Widget. Furthermore, it MUST be possible for a Widget
to seamlessly move between modes, maintaining runtime state and any processes that
are in progress.

Motivation:
Current development practice or industry best-practice and interoperability.

Rationale:
To allow a widget user agent to have a degree of control over how widgets are
displayed for the purpose of mediating the user experience. For example, the
widget user agent my attempt to switch all widgets into floating mode and then
display them in a 3D carousel.

4.6 Security and Digital Signatures

This section enumerates the requirements that a conforming specification needs to
address in order to standardize industry standard signing and an adequate security
model for widgets. The objective of this section is to ensure that a conforming
specification specifies a security model that:

Defines a robust and flexible digital signature scheme and processing model.
Makes security a fundamental part of the standardization process and permeates
all aspects of a conforming specification.
Limits the potential for widgets to perform harmful operations on end-user's

Requirement For Standardizing Widgets https://www.w3.org/TR/widgets-reqs/

22 of 28 05/02/2019, 14:03

machine or device.

R43. Runtime Security Exceptions

A conforming specification MUST specify runtime exceptions for when a widget's script
attempts to perform an action it's not authorized to perform.

Motivation:
Current development practice or industry best-practice and security.

Rationale:
To provide the API with an error recovery mechanism for when a script attempts to
perform a disallowed security-sensitive action. For example, a security exception
might be thrown if a widget attempts to access the network but has not been
granted permission by the widget user agent to do so.

R44. Digital Signatures

A conforming specification MUST specify a means to verify the authenticity and data
integrity of all resources in a widget package, with the exception of any resources
explicitly excluded by the specification (e.g. the digital signature file itself). A conforming
specification MUST provide these capabilities by specifying or recommending a
processing model for generating and verifying a digital signature associated with a widget
package. The digital signature scheme MUST be compatible with existing Public Key
Infrastructures (PKI), particularly [X.509v3].

Motivation:
Security and current development practice or industry best-practice.

Rationale:
To provide a means to verify the authenticity, check the data integrity and provide
persistent proof of origin of the widget package. Some vendors may choose to use
digital certificates as a means of quality assurance, whereby only widgets that meet
a particular level of quality and security receive a digital signature.

R45. Multiple Signatures and Certificate Chains

A conforming specification SHOULD recommend that it should be possible for a widget
package to contain multiple independent digital signatures (i.e. it be possible to include
multiple signatures and associated certificate chains). A conforming specification MUST
specify the expected behavior when multiple signatures and certificate chains are
provided. A conforming specification MUST specify that if none of the signatures and
certificate chains can be verified, e.g. because of missing root certificates or where any
certificates in the chain have expired or are not yet valid, then the widget package
SHOULD be treated as unsigned (meaning that widget is treated as if it had no digital
signature).

Motivation:
Web and offline distribution, device independence, and current development
practice or industry best-practice.

Rationale:
To enable the inclusion of certificate chains that the receiving device can use to
build a certificate chain from the end entity certificate, which is then used to verify

Requirement For Standardizing Widgets https://www.w3.org/TR/widgets-reqs/

23 of 28 05/02/2019, 14:03

the signature against the appropriate locally stored root certificate.

R46. Signature Document Format

A conforming specification MUST recommend a digital signature format that can be
extracted and conveyed independently of the widget package. A conforming specification
SHOULD provide guidelines for how any digital signature can be used separately from a
widget package. An example of such use is to perform certificate chain validation and
other checks related to the signature key information, without necessarily validating the
referenced widget content at that time. Risks associated with separating time of
verification and validation steps MAY need consideration.

Motivation:
Web and offline distribution, device independence, and current development
practice or industry best-practice.

Rationale:
To allow signature files to be extracted and used by other applications, either on the
server-side or on the client-side, for different purposes. For example, a server may
automatically extract the signature information from a widget package and serve it
upon request. The independent signature information may then be used, for
instance, to provide the user with information about the signer and associated trust
level of the widget package without needing to download the entire widget package.
Additionally, if combined with security declaration information, the signature
information may allow a security decision to be made about whether or not it will be
possible for the widget user agent to instantiate the widget; hence enabling the end-
user or the widget user agent to decide if widget package should be downloaded.
This may be particularly useful for users of widgets on mobile devices, where the
cost of downloading data can sometimes be expensive.

R47. Support for Multiple Message Digest Algorithms

A conforming specification MUST specify at least one mandatory to support message
digest algorithm. A conforming specification SHOULD recommend that other message
digest algorithms may be supported.

Motivation:
Security and longevity.

Rationale:
To provide a transitional means for developers to move towards using the more
secure hashing algorithms.

R48. Support for Multiple Signature Algorithms

A conforming specification MUST recommend that where a widget package is digitally
signed, it MUST be possible to select from multiple message signature algorithms. A
conforming specification MUST mandate that at least one signature algorithm be
supported by a widget user agent.

Motivation:
Security, longevity, and current development practice or industry best-practice.

Rationale:

Requirement For Standardizing Widgets https://www.w3.org/TR/widgets-reqs/

24 of 28 05/02/2019, 14:03

To lessen the seriousness against the risk that weaknesses will be found with a
selected algorithm.

R49. Key Lengths

A conforming specification MUST recommend that widget user agents support
processing signatures with key lengths of 2048 bits or greater. A conforming specification
MUST recommend to authors that widget packages be signed with key lengths of 2048
bits or greater.

Motivation:
Security and longevity.

Rationale:
To be in-line with current security recommendations and provide longevity of the
system security.

R50. Key Usage Extension

A conforming specification MUST specify the expected use of valid key usage extensions
and when present (in end entity certificates) MUST specify that implementations verify
that the extension has the digitalSignature bit set (as defined in [X.509v3]). A
conforming specification MUST specify that implementations recognize the extended key
usage extension and when present (in end entity certificates) verify that the extension
contains the id-kp-codeSigning object identifier.

Motivation:
Security.

Rationale:
To maintain compliance to [X.509v3] (experience suggests that if the use of the
extended key usage extension is not explicitly required, then X.509v3 is not
followed when it comes to key extension usage). Compliance ensures that only
certificates intended to be used (issued for) code signing can be used to sign
widget packages.

R51. Inclusion of Revocation Information

A conforming specification SHOULD specify a means of packaging up-to-date revocation
information with a digital signature and associated certificate chain (e.g. a Certificate
Revocation List (CRL) or Online Certificate Status Protocol (OCSP) response stating that
certificate has not been revoked). In addition, a conforming specification SHOULD
specify the behavior in the case that the revocation information is not included or not
complete. A conforming specification SHOULD specify that if the revocation information
is present the widget processing environment MUST attempt to verify the revocation
information. A conforming specification SHOULD specify the behavior if revocation
information is out of date or otherwise invalid.

Motivation:
Security

Rationale:
To enable an instantiated widget to obtain revocation information without having to

Requirement For Standardizing Widgets https://www.w3.org/TR/widgets-reqs/

25 of 28 05/02/2019, 14:03

query an online CRL or OSCP server from each device. This is significantly more
efficient and eases the load on CRL or OCSP servers. Note, however, that the
revocation information may not be as up to date as an online query. However, if this
information is updated at the server in a timely manner before widget installations,
then an online query would not be necessary at the client.

R52. Default Security Policy

A conforming specification MUST specify a default security policy that limits the privileges
afforded to a widget at runtime. The default security policy MUST be specified in such a
way that it forces a widget package to explicitly request permission to use particular
device capabilities (see also the Security Declarations requirement).

Motivation:
Current development practice or industry best-practice and security.

Rationale:
To make the default behavior of a widget as benign as possible. For example, the
default security policy might be that a widget cannot access the network.

R53. Widget Black/White Listing

A conforming specification MAY specify a mechanism that allows a remote trusted
authority to update black and/or white lists and the security policy related to widget
packages installed on the widget user agent.

Motivation:
Current development practice or industry best-practice and security.

Rationale:
To provide the mechanisms that would enable the creation of trusted public
authorities for widgets. These authorities could serve to authorize or revoke widget
packages that other members of the community have found to exhibit undesirable
aspects or malicious behavior, which could potentially damage an end-user's device
or breach their privacy or security.

R54. Security Declarations

A conforming specification MUST specify or recommend a means for declaring that an
instantiated widget will require access to resources or services that have to the potential
to introduce a security risk for an end user. A conforming specification SHOULD also
make it possible to externalize and associate security declarations with a particular
widget package (e.g., by allowing security declarations to be securely acquired from an
external trusted authority over [HTTP]). This MUST include a means of declaring the
APIs that a widget expects to access. When possible, a conforming specification MUST
specify a means to verify the authenticity and integrity of security declarations included in
the widget package (e.g. by using Digital Signatures).

Motivation:
Security, and current development practice or industry best-practice.

Rationale:
To declare the security intentions of the widget, allowing the widget user agent to,
for example, confirm with the user before installing the widget, or adjust its policies

Requirement For Standardizing Widgets https://www.w3.org/TR/widgets-reqs/

26 of 28 05/02/2019, 14:03

before instantiating it. Example of security sensitive services that could require
access-control include accessing end-user's storage device, or performing a cross-
domain request.

References

[Ajax]
Ajax: A New Approach to Web Applications. J. J. Garrett. Adaptive Path.

[BCP 47]
[Tags for Identifying Languages], A. Phillips and M. Davis. September 2009.

[CSS]
Cascading Style Sheets, level 2, revision 1, B. Bos, T. Çelik, I. Hickson, and H.
Wium Li.e. W3C.

[Dashboard Reference]
Dashboard Reference, Apple Computer, Inc.

[Digital Signatures for Widgets]
XML Digital Signatures for Widgets. M. Cáceres, P. Byers, S. Knightley, F. Hirsch,
M. Priestley (Work in Progress). W3C.

[ECMAScript]
ECMAScript Language Specification, Third Edition. ECMA.

[Google Gadgets]
Google Desktop Sidebar Scripting API, Google Inc.

[HTML]
[HTML - Living Standard]. I. Hickson. WHATWG.

[HTTP]
Hypertext Transfer Protocol -- HTTP/1.1, R. Fielding, J. Gettys, J. Mogul, H. Frystyk
Nielsen, L. Masinter, P. Leach and T. Berners-Lee. IETF.

[i18n-XML]
Practices for XML Internationalization. Y. Savourel, J. Kosek, R. Ishida. Working
Group Note. W3C.

[IRI]
Internationalized resource Identifiers (IRIs), M. Duerst, M. Suignard. IETF.

[Media Type]
Multipurpose Internet Mail Extensions (MIME) Part Two: media types, N. Freed and
N. Borenstein. IETF.

[MWBP]
Mobile Web Best Practices 1.0. J. Rabin, C. McCathieNevile. W3C.

[WCAG 2.0]
Web Content Accessibility Guidelines 2.0, B. Caldwell,M. Cooper, L. Guarino Reid,
G. Vanderheiden. W3C.

[Widget Packaging and Configuration]
Widget Packaging and XML Configuration. M. Cáceres. W3C.

[Widget Updates]
Widget Updates. M. Cáceres, R Tibbett, R. Berjon (Work in Progress). W3C.

[RFC2119]
Key words for use in RFCs to Indicate Requirement Levels, S. Bradner. IETF.

[Sidebar Reference]
Windows Sidebar Reference, Microsoft Corporation.

[Unicode]
The Unicode Standard, The Unicode Consortium.

[UTF-8]

Requirement For Standardizing Widgets https://www.w3.org/TR/widgets-reqs/

27 of 28 05/02/2019, 14:03

UTF-8, a transformation format of ISO 10646, F. Yergeau. IEFT.
[Web IDL]

Web IDL. C. McCormack (Work in Progress). W3C.
[Widget Interface]

Widget Interface. M. Cáceres (Work in Progress). W3C.
[Widget URIs]

Widget URIs. M. Cáceres (Work in Progress). W3C.
[W3C Process]

World Wide Web Consortium Process Document. I. Jacobs, W3C.
[View Modes]

The 'view-mode' Media Feature. R. Berjon and M. Cáceres (Work in Progress).
W3C.

[XML]
Extensible Markup Language (XML) 1.0 Specification (Second Edition), T. Bray, J.
Paoli, C. M. Sperberg-McQueen, E. Maler. W3C.

[X.509v3]
Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List
(CRL) Profile, D. Cooper, S. Santesson, S. Boeyen, R. Housley, and W. Polk. IETF.

Acknowledgments

The editor would like to thank to the following people who have reviewed or otherwise
contributed to this document (ordered by first name):

Alexander Dreiling, Anne van Kesteren, Arthur Barstow, Arun Ranganathan, Bárbara
Barbosa Neves Benoit Suzanne, Bert Bos, Bradford Lassey, Bryan Sullivan, Cameron
McCormack, Charles McCathieNevile, Cliff Schmidt, Claudio Venezia, Coach Wei, Corin
Edwards, Cynthia Shelly, Cyril Concolato, Dan Brickley, David Pollington, David Rogers,
Dean Jackson, Doug Schepers, Ed Voas, Gene Vayngrib,Guido Grassel, Jay Sweeney,
Jim Ley, Jon Ferraiolo, Jose Manuel Cantera Fonseca, Josh Soref, Kevin Lawver,
Krzysztof Maczyński, Lachlan Hunt, Mark Baker, Marc Silbey, Mikko Pohja, Michael
Smith, Nick Allott, Olli immonen, Paddy Byers, Philipp Heltewig, Richard Tibbett, Sally
Cain, Sean Mullan, Stephen Paul Weber, Steven Faulkner, Thomas Landspurg, Yang
Wong, Zachary Fitz-Walter.

Requirement For Standardizing Widgets https://www.w3.org/TR/widgets-reqs/

28 of 28 05/02/2019, 14:03

